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CHAPTER 1. INTRODUCTION 

The power attainable by statistical analyses is bound by sample size, the size of the safety 
effect, probability distribution, correlations between variables of analysis, and the range 
represented by key variables. Probability analysis is a viable alternative to analyze safety in 
situations with limited crash data. For example, wrong-way crashes are extremely rare, a 
situation that makes it difficult to directly measure the potential crash reduction of 
countermeasures. In order to perform a safety evaluation in these cases, it is desirable to use 
every site with known history of crashes occurring and supplement these sites with a set of 
control sites for comparison. However, by evaluating sites that were chosen based on their 
history of crashes, biased results are likely to ensue. Even when supplementing the study with 
sites with no history of crashes, bias is only reduced in the best-case scenario when traditional 
analysis techniques are used.  

Prospective versus Retrospective Analyses 

Data sets collected based on the response variable are known as retrospective or case-control 
data sets. As mentioned earlier, these data sets are useful to handle situations where the 
available number of cases or controls is limited. In contrast, a prospective analysis is preferred 
when sufficient data are available, where sites are selected based on their representativeness 
of the variables of interest (e.g., presence/absence of countermeasures) and the values of the 
response variable (number of crashes) are obtained after site selection for analysis. Irrespective 
of the nature of the data set (retrospective or prospective), the intent of a probability analysis is 
to estimate how the probability of a crash changes as a function of covariates of interest. In this 
case, the most common analytical tool is some variant of logistic regression, which estimates 
the odd ratios for risk factors associated with the probability of a crash. The actual proportion 
of crashes on a sample of data highly depends on how the data were collected (either 
prospectively or retrospectively). Figure 1 illustrates the typical differences in distributions of 
crashes that result from sampling prospectively (on the left) and retrospectively (on the right). 
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Figure 1. Prospective and Retrospective Distributions from a Population of Sites in Common. 
 

This distortion of the true distribution of crashes in retrospective sampling have the potential to 
severely bias the results from analyses that focus on changes of the distribution parameters, 
such as Poisson and Negative Binomial crash-frequency models. However, the effect of an 
explanatory variable on the response variable is not sensitive to the sampling scheme or the 
distortion in distribution shape if such effect can be expressed and interpreted as a change in 
the odds of the response variable, rather than a change in mean expectation. The impact of 
different sampling schemes should only be evident on the intercept term of the logistic 
regression results [1].  

The results from applying the logistic regression method, despite being robust to the sampling 
scheme, in general do not directly translate to the scale of expected crashes. A measure of such 
expectation would require that the distribution of crashes in the complete sample (including 
control cases) be considered representative of any facility similar to those in the study. While 
frequency analysis results can be easily used to formulate crash modification factors (CMFs) 
compatible with the framework of the Highway Safety Manual (HSM) [2], the literature only 
indicates empirical or anecdotal evidence of comparable (possibly interchangeable) CMFs 
developed from probability-based analyses. For example, previous work [3] has shown that the 
CMF estimated from a case-control setup follows closely the trends of known CMFs from the 
HSM. Other approaches include previous works [4] that combined results from probability, 
exposure, and frequency analysis to estimate the expected number of truck collisions with 
bridge piers. Avelar et al. [5] developed probability models to estimate the risk of collisions with 
tire debris left on roadway pavement surface due to the unfeasibility of developing crash 
frequency models for such a rare type of crash.  
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Despite these and other prior efforts, the relationship between results from risk and frequency 
analyses is not completely understood. For instance, in the section for case-control studies of 
the reference document A Guide to Developing Quality Crash Modification Factors [6], it is 
stated, “the odds ratio is a direct estimate of the CMF.” In the same section of the report, it is 
stated that “case-control studies cannot be used to measure the probability of an event (e.g., 
crash, severe injury) in terms of expected frequency.” Given the current knowledge about CMFs 
developed from retrospective samples, this project assessed the degree of representativeness 
of these CMFs and the degree to which they can be deemed reliable based on a close 
examination of the mathematical statistics of both prospective and retrospective analyses. 

Project Objectives 

The primary goal of this study was to develop a methodology, if feasible, that obtained reliable 
CMFs and their standard errors (SEs) from probability-based safety evaluations that are 
equivalent to the CMFs expected from a frequency-based analysis. The specific objectives were 
as follows: 

1. To establish the relationship of equivalence between the outcomes of frequency-based 
analyses (FBA) and probability-based analyses (PBA) for safety evaluations. 

2. To develop a methodology to construct CMFs and SEs from PBA safety evaluations. 
3. To test and validate the methodology using a synthetic data set. 

Structure of the Report 

This report is divided into five chapters. Chapter 1 introduces this research and the structure of 
the report. Chapter 2 summarizes the literature review performed prior to designing an analysis 
plan and evaluation. Chapter 3 develops a theoretical framework that links the results from 
retrospective analysis to the equivalent effect on the crash frequency domain. Chapter 4 
summarizes the data development process, experiment design, and analysis. Finally, Chapter 5 
provides the conclusions and outlines the future directions from this work.  
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CHAPTER 2. LITERATURE REVIEW 

This chapter summarizes literature relevant to this research’s questions of interest. Researchers 
performed a thorough literature search on CMF development within the last 20 years. The first 
section presents an overview of CMFs in the context of the HSM. The next two sections 
describe different methods that have been proposed for estimating CMFs. The second section 
of this chapter describes the basic methods that been used for their development. The third 
section covers recent methods that have been proposed for handling small and incomplete 
data sets for the estimation of CMFs. The description also provides information about the 
strengths and weaknesses of the proposed methods. A final subsection is added to discuss the 
findings from the literature. 

Introduction 

CMFs are statistical estimates that describe how key variables, such as geometric and 
operational variables, affect the occurrence of crashes on the facilities. In some safety-related 
documents, CMFs are defined as a measure of the estimated effectiveness of a safety 
countermeasure [7]. However, more broadly, a CMF can be defined as a change in crashes due 
to a shift in one or more variables that can either positive (reduction) or negative (increase). A 
CMF is used as a multiplicative factor to compute the expected number of crashes at a location 
after implementing a specific countermeasure or a change in geometric or operational 
variables. A CMF with a value of more than one indicates an expected increase in the number of 
crashes, whereas a CMF with a value less than one indicates a decrease in the number of 
crashes. CMFs can be presented either as a single value (point estimate) or a function that 
considers relevant site characteristics [7].  

The HSM and the Highway Safety Improvement Program manual provide guidelines to identify 
and prioritize sites, select appropriate countermeasures for safety enhancement of those sites, 
and determine the effectiveness of these safety countermeasures. The HSM provides a catalog 
of CMFs for various geometric and operational treatment types, which are based on robust 
scientific evidence [8]. The CMF Clearinghouse is a web-based database, managed by the 
Federal Highway Administration (FHWA), which provides a very comprehensive list of CMFs 
that safety analysts and practitioners can use for different types of projects. As CMFs are 
developed under the assumption that all other conditions and site characteristics remain 
constant, the validity of CMFs rely on consistent and agreeable base conditions.  

Traditional Development of Crash Modification Factors 

FHWA provided a guide in 2010 for developing CMFs [9]. Table 1 summarizes all study designs 
in this document. 
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Table 1. Summary of Study Designs for Developing CMFs [9]. 
Study Design General Applicability Strengths Weaknesses 

Before-After 
w/Comparison 
Group 

Treatment is similar among treatment 
sites. Untreated sites are used to account 
for non-treatment related crash trends. 

Accounts for non-
treatment related time 
trends and changes in 
traffic volume. 

Difficulty in accounting for 
regression-to-the-mean. 

Before-After 
w/Empirical 
Bayes 

Treatment is similar among treatment 
sites. A separate comparison group may 
be required where the treatment affects 
the reference group. 

Accounts for regression-
to-the-mean, traffic 
volume changes, non-
treatment related time 
trends. 

Cannot include prior 
knowledge of treatment, 
considerations for spatial 
correlation, or complex 
model forms. 

Full Bayes Used in before-after or cross-section 
studies. Useful when complex model 
forms are required or samples are small. 
Previous CMFs are to be introduced in the 
modeling. 

Reliable results with small 
sample sizes. Can include 
prior knowledge, spatial 
correlation, and complex 
model forms in the 
evaluation. 

Implementation requires a 
high degree of training. 

Cross-Sectional Requires sufficient sites that are similar 
except for the treatment of interest. 

Useful when predicting 
crashes. Allows estimation 
of CMFs when 
conversions are rare. 

CMFs may be inaccurate if 
applied without care. 
Omitted variable bias, 
correlation among variables, 
and inappropriate functional 
form are some of the 
potential issues. 

Case-Control Assess whether exposure to a potential 
treatment is disproportionately 
distributed between sites with and 
without the target crash. 

Useful for studying rare 
events because the 
number of cases and 
controls is predetermined. 

Can only investigate one 
outcome per sample. Does 
not differentiate between 
locations with one crash or 
multiple crashes. 

Cohort Used to estimate relative risk, which 
indicates the expected percent change in 
the probability of an outcome given a unit 
change in the treatment. 

Useful for studying rare 
treatments because the 
sample is selected based 
on treatment status. 

Only analyzes the time to the 
first crash. Large samples are 
often required. 

Meta-Analysis Combines knowledge on CMFs from 
multiple previous studies while accounting 
for the study quality in a systematic and 
quantitative way. 

Can be used to develop 
CMFs when data are not 
available for recent 
installations and it is not 
feasible to install the 
strategy and collect data. 
Can combine knowledge 
from several jurisdictions 
and studies. 

Requires the identification of 
previous studies for a 
particular strategy. Requires 
a formal statistical process. 
All studies included should 
be similar in terms of data 
used, outcome measure, and 
study methodology. 

Expert Panel Expert panels are assembled to evaluate 
the findings of published and unpublished 
research critically. A CMF 
recommendation is made based on 
agreement among panel members. 

Can be used to develop 
CMFs when data are not 
available. Can combine 
knowledge from several 
jurisdictions and studies.  

Traditional expert panels do 
not systematically derive 
precision estimates of a CMF. 
Possible forecasting bias. 

Surrogate 
Measures 

Surrogate measures may be used to derive 
a CMF where crash data are not available 
or insufficient. 

Can be used to develop 
CMFs in the absence of 
crash-based data. 

The approach to establish 
relationships between 
surrogates and crashes is 
relatively undeveloped. 
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Some of the highlights are as follows:  

1. For before-after studies, data need to be available for both treated and untreated sites. 
2. A cross-sectional study is useful when before-after data are limited.  
3. Case-control studies indicate the likelihood of crash reduction/increase by a treatment 

by using odds ratio (OR) analysis. 
4. For expert panels, a formal statistical process is not required. 

The selection of a study design depends on whether there are data on the treatment available 
or whether the treatment can be installed, and the data can be collected after the installation. 
The document presents a flow chart to help engineers select the appropriate study design for 
developing one or more CMFs (Figure 2).  

 
Figure 2. Flow Chart for Study Design Selection [9]. 

 

If there are no data available or collecting data after installation of the treatment is unfeasible, 
then a meta-analysis or an expert panel may be used to develop the CMF. If there are sufficient 
data, but no sufficient similar locations without the treatment and data are available for the 
major factors affecting crash risk, then cross-sectional, case-control, and cohort study methods 
may be used. Gross and Donnell suggested that case-control and cross-sectional studies 
produce consistent results if care is taken in the study design and the development of 
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regression models (i.e., having many covariates, functional form). Case-control and cross-
sectional studies may provide a viable alternative to estimate CMFs when a before-after study 
is impractical due to data restrictions. For example, when CMFs for fixed roadway lighting (at-
grade intersections, Minnesota) and the allocation of lane and shoulder widths (rural two-lane 
highway segments, Pennsylvania) were estimated, the case-control method produced CMFs 
that were greater than respective CMFs from the cross-sectional method. By comparing the 
results from full and restricted models, the study illustrated the importance of controlling for 
potential confounding variables while estimating safety effects and the danger of excluding 
important covariates, which may result in over- or under-estimation of the expected safety 
effects [10]. The quality of a CMF is related not only to the study design but also to other 
factors including sample size, robustness of data, SE, and accounting for potential sources of 
bias. Table 2 shows the sample size considerations for each study design. 

For cross-sectional studies, more data are required when variables of interest are not 
statistically significant. A traditional before-after analysis can be performed with data collected 
from 10 to 20 sites. In comparison, cross-sectional studies require data including at least 100, 
but often 1,000 or more sites or observations. The standard deviation is a better indicator of 
the precision of the CMF when safety effectiveness of the treatment for a future application in 
a different area or jurisdiction is to be determined [11]. Increasing the sample size will not 
necessarily reduce the standard deviation but improving (or reducing the uncertainty for) the 
relationship between the CMF and the risk factors associated with the crash modification 
function. Quality data for crashes and traffic volume are crucial in developing CMFs.  

Advanced Methods for Developing CMFs 

Other methods have been proposed for developing CMFs in response to the need for large 
samples, or large data collection efforts required by traditional methods. For example, one 
method combined the safety effects of various CMFs, since CMFs may not be independent in 
practice [7]. Park and Abdel-Aty combined multiple CMFs using a weighed linear regression 
model and an analytic hierarchy process by considering different roadway types and crash 
severity levels [12]. The authors concluded that the devised method could overcome over-
estimation of CMFs and produce results that are more reliable when safety effects of multiple 
treatments are combined. 
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Table 2. Sample Size Considerations for Methods Adopted to Develop CMFs. 
Method Sample Size Considerations 

Before-After Studies 
with Comparison 
Group 

The variables that impact the precision (SE) with which the CMF is estimated are:  
1. The size of the treatment group, in terms of the number of crashes in the before 
period. 
2. The relative duration of the before and after periods.  
3. The likely (postulated) CMF value.  
4. The size of the comparison group in terms of the number of crashes in the before and 
after periods. 

Before-After Studies 
with Empirical Bayes 

Currently, there is no formal method for determining required sample sizes for the 
empirical Bayes before-after approach. The method presented by Hauer can be used to 
approximate the sample size required. The sample size estimates could be considered 
conservative as the empirical Bayes approach reduces uncertainty in the estimate of 
expected crashes [13]. 

Full Bayes Sample size considerations for full Bayes modeling are similar to those for cross-sectional 
studies or before-after studies. 

Cross-Sectional 

For cross-sectional studies, the number of locations required will depend on several 
factors including:  
1. Average crash frequencies.  
2. The number of variables desired in the model.  
3. The level of statistical significance desired in the model. 
4. The amount of variation in each variable of interest between locations. 

Case-Control 
The required sample size for a case-control study design is calculated by using an 
equation that considers the case to control ratio, prevalence of treatment, statistical 
significance level, and the common proportion over two groups among other factors. 

Cohort Studies 

For a cohort design, the required sample size may be calculated using the ratio of 
treatment group to reference group, proportion in the reference group where an 
outcome was observed, desired detectable relative risk (i.e., magnitude of the safety 
effect to be detected), and common proportion over two groups among other factors. 

Meta-Analysis NA (weighting of CMFs) [14]  
Expert Panel NA (expert panel is similar to the meta-analysis approach but is less formal) 
Surrogate Measures NA (based on availability of reliable model) 

 

A method that has been used to avoid the need of large-scale data collection for cross-sectional 
studies was the application of safety surrogate measures by Saleem and Lorion [15]. The study 
used traffic conflicts as a safety surrogate to evaluate the effectiveness of several safety 
treatments. The treatments were: installing left-turn lanes on major road approaches at four-
leg signalized intersections, installing left-turn lanes on major road approaches at three-leg 
two-way stop controlled intersections, installing right-turn lanes on major road approaches at 
four-leg signalized intersections, and changing the left-turn signal control from permissive to 
protected-permissive at four-leg signalized intersections. Using traffic simulation software, 
researchers observed the changes in traffic conflicts due to changes in road design and 
computed Conflict Modification Factors. Crash-conflict relationship was then used to estimate 
CMFs. The CMFs were then compared to the CMFs available from the HSM and the CMF 
Clearinghouse. The proposed methodology yields CMFs that closely match CMFs obtained from 
observational studies [15].  
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Probability analysis using logistic regression techniques, OR, and other univariate statistical 
analyses have been applied to study the probability increase in crash risk involving the use of 
alcohol and the use of a cellular phone [16, 17]. Researchers in Australia examined the 
correlation between variables and sleep-related crashes on slow-speed roads. Sleep-related 
vehicle crashes made up 1.6 percent of total crash data on low-speed roads. The data were 
analyzed using Chi-square tests with Cramer’s V as an estimate of the effect along with a 
multivariate analysis consisting of a series of logistic regressions [18].  

A crash occurrence is typically considered a rare event, and especially rare in some cases. 
Researchers have postulated that working with rare events in general tends to exacerbate the 
bias [19]. In logistic regression, maximum likelihood estimates (MLE) are consistent but only 
asymptotically unbiased [20]. Exact logistic regression foregoes asymptotic properties of 
estimates as with the MLE. Because the total event count matters, not percentage, exact 
logistic regression may be used when sample size is too small compared to using the usual 
logistic regression estimated using the MLE [21]. Exact logistic regression is useful when sample 
size is less than 200, the covariates are discrete, and the total number of covariates is small. 
Firth has proposed a bias correction method, known as the penalized maximum likelihood 
estimates (PMLE) [22]. The PMLE were found to be unbiased, even in cases with small sample 
size, as the estimates always converged and solved the problem of separation [23]. Researchers 
recommended to keep the sample size large and apply PMLE when estimating logistic 
regression models with rare events data [24]. Some data scientists have paired modeling rare 
events based on logistic regression model with post-hoc adjustments of the results to cast 
predictions applicable to the population level [25]. For example, the post-hoc adjustment 
proposed by Tanish is based on a simple Ordinary Least Squares regression developed from the 
logistic regression predictions and a few deciles of those proportions obtained directly from the 
marginal distribution of the response in the population. 

 

 
Figure 3. Step by Step Process of Modeling Rare Events Based on Usual Logistic Regression Model [25]. 
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To estimate the likelihood of future crashes, Das et al. employed the logistic regression method 
using eight years of traffic crash data in Louisiana. The authors conducted an exploratory 
analysis to develop a crash prediction model that would estimate the likelihood of future 
crashes for at-fault drivers, and in particular, those defined as crash-prone drivers. Researchers 
analyzed over 700,000 crash records that had a driver declared to be at-fault. Drivers involved 
in multiple crashes in a single year and marked as at-fault were classified as crash-prone. 
Researchers estimated that 5 percent of licensed Louisiana drivers are crash-prone. The model 
considered 371 attributes from the crash records, including driver age, roadway lighting 
condition, and weather. According to the authors, logistic regression is particularly beneficial 
when analyzing a data set that contains many explanatory variables [26].  

Researchers in Greece considered road crashes as rare-events when analyzing traffic data at the 
Attica Tollway. Researchers proposed a series of rare-events logit models to analyze road 
accident occurrences and used real-time traffic data from three random loop detectors in the 
Attica tollway located in the Greater Athens area. The study concludes by stating that the logit 
model provides an adequate statistical fit to estimate the relationship between crash 
occurrence and traffic factors, such as speed [27].  

King and Zeng preferred choice based or endogenous stratified sampling (case-control) data 
collection strategies over random sampling or exogenous stratified sampling (cohort/cross-
sectional) strategies when crashes were considered as rare events [28]. King and Zeng used rare 
event logistic regression to address problems in the statistical analysis of rare events data 
(under 5 percent of total event data). The regression analysis provided an unbiased approach 
based on absolute and relative risks. Maximization of the weighted log-likelihood was adopted 
instead of traditional maximizing log-likelihood. Parameters were estimated based on weighted 
least-squares regression, which were said to reduce the bias and variance. Researchers 
recommend case-cohort study when the study includes a variable that is expensive to collect. 
For all ranges of subsampling, the approximate Bayesian estimate produced a lower root mean 
square error than the logit and unbiased estimator. The correction method proposed by King 
and Zeng somewhat over-corrects the bias in MLEs as sample size gets small (200 or smaller) 
[29].  

Veazey et al. [30] used the rare event logistic regression proposed by King and Zeng [28] to 
predict the distribution of mesophotic hard corals across the main Hawaiian Islands and 
implemented it using the Zelig package in R with satisfactory results. Researchers documented 
their workflow well, showing many precautions to avoid well-known modeling pitfalls. A 
correlation scatter plot matrix was constructed, and highly correlated variables were excluded. 
Predictors that lacked a clear distribution pattern or correlated minimally were also excluded. 
The inclusion of squared terms in the regression equation permitted the logistic curve to reflect 
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a bell curve shape expected from a preliminary exploration of the data. All possible 
combinations of included covariates were modeled and ranked using the corrected Akaike 
information criterion. Researchers checked small-scale, local spatial autocorrelation using 
Geary’s C statistic, based on the deviations in the responses of observation points with one 
another. The authors also computed the global spatial autocorrelation using the Moran’s I 
statistic, which measures cross-products of deviations from the mean value. Receiver operating 
characteristics curves were plotted, and overall prediction success of each model was 
calculated. Values for sensitivity and specificity for threshold increments of 0.005±1 standard 
deviation of the rounded mean for each model were calculated. 

The ORs for a given exposure are routinely obtained within logistic models while controlling for 
confounders. They are often interpreted as equivalent to relative risks, which may lead to 
potentially serious problems, as researchers in public health argue that the OR always 
overestimates relative risk [31]. Roadway safety researchers have argued that case-control 
studies cannot be used to measure the probability of an event (e.g., crash, severe injury) 
relative to the expected frequency and are more often used to show the relative effects of risk 
factors [32]. These researchers advocate for multiple logistic regression techniques can be used 
to clarify these relationships because of the logistic regression’s ability to examine the risk 
associated with one factor while controlling for other factors [32].  

Shrestha et al. used multiple logistic regression with a limited amount of data in Nevada. 
Researchers investigated the factors associated with vehicle crash severities in built-up areas 
along rural highways in Nevada. The study used a binary logistic regression model to analyze a 
total of 337 crashes that took place around 11 towns from 2002 to 2010, and an OR analysis to 
calculate the risk likelihood related to the severity of the crash. Researchers also calculated the 
marginal effects of the covariates. The study found reliable predictors using this method. 
Speeding and inattention were associated with a greater likelihood of more severe crash [33]. 

Klauer et al. conducted an in-depth analyses of driver inattention using data collected from 100 
vehicles in a naturalistic driving study. For the analysis, the study created an event database 
(i.e., crashes, near-crashes, incidents) and a baseline database. The baseline database was 
created by stratifying the large amount of data according to number of crashes, near-crashes, 
and incidents in which each vehicle was involved. After the stratification, a sample of 20,000 
baseline epochs made up the baseline database. The baseline database was used as a case-
control data set for more accurate calculation of OR. The study found that handheld device use, 
driver drowsiness, and engaging in complex secondary tasks increase the crash/near-crash risk 
[34]. Assumption bias may overstate the results risk obtained from an OR analysis. Young 
reanalyzed the data used in a study by Virginia Tech Transportation Institute. Substantially 
lower estimates of population exposure percent (Pe %) and population attributable risk percent 
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were obtained when using a standard method for epidemiological analysis when compared to 
the method adopted by Virginia Tech Transportation Institute. The author suggested that the 
bias might be due in part to the definition of variables and other data reduction techniques 
used before performing the OR analysis [35].  

Abdel-Aty et al. modeled the crash probability using a logistic model by constructing conditional 
likelihood and matched case-control logistic regression based on real-time traffic flow data 
obtained from loop detectors. The estimated parameters were log OR, which can be used to 
approximate the relative risk of a crash and develop a prediction model under the matched 
crash/non-crash analysis by establishing a threshold value that yields desirable crash 
classification accuracy. To identify all significant variables, a binary outcome variable was 
modeled using the stratified conditional logistic regression method. Higher occupancy rates 
upstream coupled with high variation in speed downstream of the crash location, both at 5 to 
10 min before the crash; increase the likelihood of crash occurrence at a location in-between 
[36].  

Crash risk analysis models were developed under the assumption that the same traffic status 
would hold identical crash probability for different roadway sections. A study by Yu, Wang, and 
Abdel-Aty adopted a hybrid latent class analysis modeling approach to address heterogeneous 
effects of geometric characteristics. The proposed model was tested using Shanghai’s urban 
expressway crash data, geometric characteristics data, and roadway section traffic data  [37]. 
Separate crash risk analysis models were established for the crashes at the three homogeneous 
subgroups (based on geometric characteristics) using Bayesian random parameter logistic 
regression models once the crash data were segmented to three classes based on crash 
occurrence locations depending on latent class analysis results. The optimal number of latent 
classes were found using bootstrap likelihood ratio tests. The parameters were estimated by 
maximum likelihood using expectation-maximization procedure [38].  

Wu et al. developed a new CMF for rural two-lane undivided horizontal curve data using a 
cross-sectional study design. The study compared the CMF findings to those in the HSM and the 
CMFs developed by Gooch et al. [39]. The curves were divided into eight bins based on the 
frequency of curves and each bin contained approximately similar number of curves. Mean radii 
of curves within a bin was considered as the primary feature and the total number of observed 
crashes represented the safety of curves in that bin. The number of crashes for each curve was 
predicted by considering them tangents using the base HSM safety performance function for 
rural two-lane highways. Initial ratios of observed to predicted safety was calculated and 
normalized based on the bin with greatest radii. The results showed that decreasing radii 
increases the number of crashes and the developed methodology outperformed others [40].  
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In 2016, Gooch et al. used a mixed-effects negative binomial regression to quantify the safety 
performance of horizontal curves on two-way, two-lane rural roads. To overcome the 
limitations of small sample sizes and unreported SEs, researchers used a propensity  
score-potential outcomes framework. The propensity scores-potential methodology was used 
to estimate a CMF for horizontal curves. A cross-sectional analysis was used to explore the 
impacts of adjacent curves on crash frequency. The model used eight years of crash data 
obtained from 10,000 miles of two-lane rural roads in Pennsylvania. The study found that 
presence of horizontal curves was associated with an increase in crash frequency. The CMF for 
total crash frequency was a function of the degree of curvature and curve radius. Overall, the 
CMF increased as curve radius decreased. The study also found a decrease in crash frequencies 
when adjacent curves were close [39].  

Crash records may also be incomplete or have missing data fields. A Complete Records Analysis 
(CRA) logistic regression was used in a study to estimate exposure ORs without bias for studies 
with missing data. The CRA was found to be asymptotically unbiased, if the data are missing at 
random in large samples, meaning the missing record is independent of the variables involved 
in the analysis. Exposure ORs were estimated without bias (asymptotically) when missing data 
were not jointly dependent on exposure and outcome. The authors recommended the use of 
directed acyclic graph to check whether the missing data mechanism falls within the classes 
where CRA logistic-regression exposure OR estimate are asymptotically unbiased [41]. Other 
studies recommend a sensitivity analyses when a large proportion of data is missing [42].  

Summary 

This review of literature documented different methods for estimating CMFs. The traditional 
methods usually require large data sets, the use of a control or reference group, and complete 
set of crash records. Lacking the complete data sets may lead to an overestimation of risk factor 
and an inaccurate CMF for a particular treatment. On the other hand, a small sample size may 
also lead to a biased estimate of the CMF. In order to overcome these limitations, researchers 
have used different statistical methods to account for small sample size and missing data. The 
literature review described those methods that have been proposed in the past. 

Specific to logistic regression approaches, this review found various nuances and issues that 
researchers, both in the roadway safety and other arenas, have identified when retrospective 
samples are used to estimate risk. The next chapter delves into the specific theoretical issues 
that emerge when logistic regression is applied to a hypothetical crash generating process. 
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CHAPTER 3. THEORETICAL FRAMEWORK 

This chapter develops a theoretical framework to establish analytically how a safety estimate 
derived from a retrospective analysis relates to the CMF as defined in the HSM. The framework 
is developed starting from the crash generation process and accepted premises applied to the 
hypothetical that the CMF definition in the HSM is true. 

Crash Generation Process 

This section outlines principles believed to underlie the process by which crashes occur (named 
the crash generation process from this point on). 

Homogeneous Poisson Process 
A homogeneous Poisson process can be defined in several ways. Most relevant to highway 
safety, it is a count process of events (i.e., crashes) emerging from a succession of independent 
and identically distributed (i.i.d.) Bernoulli trials from a crash-generating process with 
parameter p. A second, oftentimes useful definition is that of a stationary and independent 
process whose events are independent and the time periods between events. As a result, the 
count of events obtained from a fixed time period is a Poisson distributed random variable. An 
important property of this homogeneous process is that it is memoryless (independent events 
in the dimension of time). Another important property is that the convolution of independent 
Poisson processes is a Poisson process itself. 

Non-Homogeneous Poisson Process 
A non-homogeneous Poisson process is a Poisson process for which the single distribution 
parameter of the count process is a variable itself. A potentially useful way to handle non-
homogeneous Poisson processes is by defining them as a homogeneous Poisson process on a 
non-linear time scale, which permits the application of some useful known properties of 
homogeneous Poisson processes in handling the non-homogeneous case. In this context, 
imposing a probability distribution to describe the variability of the count process parameter in 
the data generation process could be seen as a scaling of the time between the events. 

Time between Events in Poisson Processes 
In a homogeneous Poisson process, the times between events are independent, so it can be 
shown that the time between events are i.i.d. exponential random variables. In the case of a 
heterogeneous Poisson process, characterizing the stochasticity of the time between events is 
not straightforward. However, in this case, a scale transformation exists such that the times 
between events are Geometric i.i.d. random variables in the transformed time scale as 
mentioned before. 
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Emergence of the Poisson Distribution 
Because a homogeneous Poisson process generates independent times between events, the 
process is essentially a set of successive independent Bernoulli trials in a given period of 
time ∆𝑡𝑡. Each trial takes place in an epoch 𝛿𝛿 resulting from a homogeneous partition of ∆𝑡𝑡 into 
n equal sub periods. In this case, the expectation of the number of events during ∆𝑡𝑡 is the sum 
of the expectations during all subperiods: 

𝐸𝐸(𝑁𝑁) = 𝜆𝜆 = 𝑛𝑛 ∙ 𝑝𝑝 Equation 1 
 

Where,   

𝐸𝐸(𝑁𝑁) 
= Expected value of N (number of crashes); 

𝜆𝜆 = Mean parameter; 

𝑛𝑛 = Number of trials in experiment; and  

𝑝𝑝 = Probability of crash per trial. 

Where N is the number of events in ∆𝑡𝑡, 𝜆𝜆 is the expectation for N, n is the number of equal 
subperiods in ∆𝑡𝑡, and p is the expectation of success in each Bernoulli trial. An implied 
assumption here is that not more than one event is likely to occur in one epoch, if at all (a 
reasonable assumption for a large enough n with respect to 𝜆𝜆). The probability of obtaining y, a 
given value of N, can be written using the Binomial distribution: 

𝑃𝑃(𝑁𝑁 = 𝑦𝑦) = �
𝑛𝑛
𝑦𝑦� ∙ 𝑝𝑝

𝑦𝑦 ∙ (1 − 𝑝𝑝)(𝑛𝑛−𝑦𝑦) 

 
Equation 2 

 

Where y is a realization of random variable N. It is straight forward to demonstrate that, for a 
fixed success rate p (i.e., from a homogeneous Poisson process), the following relation is exact: 

𝑃𝑃(𝑁𝑁 = 𝑦𝑦) = lim
𝑛𝑛→∞

��
𝑛𝑛
𝑦𝑦� ∙ 𝑝𝑝

𝑦𝑦 ∙ (1 − 𝑝𝑝)(𝑛𝑛−𝑦𝑦)� =
𝜆𝜆𝑦𝑦

𝑦𝑦!
∙ 𝑒𝑒−𝜆𝜆 

 
Equation 3 

which corresponds to the Poisson distribution. 

Discussion 
Previous work has shown that deviations from the assumption of a constant Bernoulli 
expectation in the homogeneous Poisson process explains overdispersion to a great extent (i.e., 
convex function of the mean of the count) typically observed in crash data [43]. A random 
change in the expectation of each Bernoulli trial would in turn result in random changes in the 
count process expectation, which would result in a non-homogeneous Poisson process (i.e., 
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probability a crash varies from trial to trial in the crash generating process). Such a process 
lends itself to modeling as some Poisson mixture model.  

Modeling the Crash Generating Process: Exposure and Direct Proportionality 

As indicated in Equation 1, the expectation of the count function is directly proportional to a 
number of trials n and some probability determined by other factors. The number of trials can 
be understood as the exposure to the Poisson process. Strictly speaking, exposure refers to a 
length in time that the Poisson process is at work, so that a Poisson distribution can emerge 
from a repeated binomial experiment, as shown in the previous section. However, exposure 
can refer to dimensions other than time. For example, the length of a segment must have a 
direct relationship to the crashes within that segment. 

AADT as Exposure 
In the two prior examples of exposure (i.e., time and length), the direct proportionality does 
not entail any curvature (i.e., the constant exponent for the exposure variable in a model must 
be 1.0). In early years, such type of proportionality was expected also between crashes and the 
annual average daily traffic (AADT) variable, but the results of several works have shown that 
not to be the case in general [2, 44, 45, 46, 47, 48, 49]. There are many potential explanations 
of this contrast: study setup, endogeneity in the model, heterogeneous units of analysis, and 
differences in operational characteristics that may affect safety, among others. Regardless of 
other potentially influential factors, the AADT is a yearly average and as such, it is not really 
exposure to traffic but a reasonable surrogate. In other words, because two sites equal in their 
geometries and even with the same AADT can have very different hourly traffic patterns, the 
AADT is not a direct measure of exposure for any given small epoch. Therefore, the anticipated 
exponent of AADT as exposure has been found at times statistically significantly different from 
1.0, either larger or smaller than one by different research studies. 

Crash Generating Process from a Spatial-Temporal Exposure Standpoint 
Considering exposure in time and in space, as discussed above, let the rate of a non-
homogeneous Poisson process be defined locally in small differentials of space and time so that 
the expectation is approximately fixed, for a given level of traffic exposure expressed by a 
surrogate measure, such as the AADT. In that case, the crash expectation at this limited window 
of time and space is defined as: 

𝐸𝐸(𝑁𝑁) = 𝜆𝜆 = ∆𝑡𝑡 ∙ ∆𝑆𝑆 ∙ 𝑓𝑓(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) ∙ 𝜆𝜆0 Equation 4 
 

Where,   
∆𝑡𝑡 = Small amount of time exposure. 
∆𝑆𝑆 = Small amount of space exposure. 
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𝑓𝑓(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = Non-linear monotonic functional form of traffic 
exposure using AADT as a surrogate. 

All other variables as previously defined.   
 

Sampling Scheme and CMF Estimation 

Note the definition of the CMF according to the HSM and its relation to the sampling scheme 
(either prospective or retrospective). Equation 5 represents the definition of a CMF in terms of 
crash expectation, per the HSM: 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐸𝐸(𝑁𝑁|𝐶𝐶 = 1)
𝐸𝐸(𝑁𝑁|𝐶𝐶 = 0) Equation 5 

where, 

CMF = Crash Modification Function/Factor. 

N = Number of Crashes. 

C = Indicator variable for a Condition, 1 if present, 0 otherwise. 

For a given period and location, and after controlling for other relevant exposure, the CMF 
represents the multiplicative change in crash expectation when a treatment is present (i.e., 
C=1) relative to the treatment not being present (i.e., C=0). Therefore: 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝜆𝜆𝐶𝐶=1
𝜆𝜆𝐶𝐶=0

=
𝑝𝑝𝐶𝐶=1
𝑝𝑝𝐶𝐶=0

 Equation 6 

 

The adequacy of Equation 6 depends on the reasonable assumption that true exposure (either 
time or space, per Equation 4) should cancel when defining this ratio. If this is not a reasonable 
assumption, then 1) the CMF value must be dependent on the amount of exposure; and 2) the 
application of the CMF should affect the relationship between crashes and exposure. 

Re-expressing the above definition in terms of probabilities conditional to the treatment: 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑝𝑝𝐶𝐶=1
𝑝𝑝𝐶𝐶=0

=
𝑃𝑃(𝑁𝑁 > 0|𝐶𝐶 = 1)
𝑃𝑃(𝑁𝑁 > 0|𝐶𝐶 = 0) Equation 7 

 

Equation 7 will be revisited after the next section that introduces and discusses retrospective 
sampling. 
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Retrospective Sampling 

A retrospective sampling scheme entails a sample that is selected based on the output variable. 
This approach is advantageous in cases of especially rare events where there is interest in using 
all known events in the analysis. In this case, an analyst would supplement the data set of 
events known with an additional data set representing non-events. Logistic regression can 
handle these situations, as the OR has been shown to be invariant between retrospective and 
prospective samples [1]. In this context, p in Equation 1 refers to the marginal prospective 
probability of an event, which relates directly to the unconditional probability of the count 
variable (as shown in Equation 3). In the case of a retrospective sample, however, the count 
variable is conditional to the sampling scheme and therefore: 

𝑃𝑃(𝑁𝑁 = 𝑦𝑦|𝑍𝑍 = 1) ≠ 𝑃𝑃(𝑁𝑁 = 𝑦𝑦) Equation 8 
 

Where,   

𝑍𝑍 
= Indicator variable equals 1 when the unit is 

included in sample, 0 otherwise. 

𝐸𝐸(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒|𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑉𝑉𝑡𝑡𝑉𝑉𝐶𝐶𝑛𝑛) = The conditional expectation of Variable given a 
Condition. 

Other variables as previously defined.   
 

A relationship exists between the prospective and retrospective probabilities. Let the sampling 
rate 𝜅𝜅 of a retrospective sampling scheme be defined as the ratio shown in Equation 9: 

𝜅𝜅 =
𝑃𝑃(𝑍𝑍 = 1|𝑁𝑁 = 0)
𝑃𝑃(𝑍𝑍 = 1|𝑁𝑁 > 0) Equation 9 

 

𝜅𝜅 represents the odds of non-cases to be included in the sample and it is calculated as the ratio 
of the number of non-cases to the number of cases included in a given sample. For a sampling 
scheme with known 𝜅𝜅, the prospective and retrospective probabilities relate as shown in 
Equation 10: 

𝑝𝑝 =
𝜅𝜅 ∙ 𝑝𝑝∗

1 + 𝜅𝜅 ∙ 𝑝𝑝∗ − 𝑝𝑝∗
 Equation 10 

 

Where,   
𝑝𝑝 = Prospective probability that N>0;  
𝑝𝑝∗ = Retrospective probability that N>0; 

Other variables as previously defined.   
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The definition in Equation 9 relates the sampling procedure (via the outcome distribution 
conditional to the sample) and the marginal distribution of the outcome variable in the 
population under study (i.e., the unconditional outcome distribution). However, after applying 
the Bayes theorem, 𝜅𝜅 can be re-expressed in terms of the conditional distribution as observed 
in the sample and the marginal distribution of the crashes in the population as shown next in 
Equation 11: 

𝜅𝜅 =

𝑃𝑃(𝑁𝑁 = 0|𝑍𝑍 = 1)
𝑃𝑃(𝑁𝑁 > 0|𝑍𝑍 = 1)

𝑃𝑃(𝑁𝑁 = 0)
𝑃𝑃(𝑁𝑁 > 0)

 

 

Equation 11 

 

After making the corresponding substitutions, it is straightforward to show how starting from 
Equation 11 one can arrive at Equation 10, or alternatively to Equation 12. 

𝑝𝑝∗ =
1
𝜅𝜅 ∙ 𝑝𝑝

1 + 1
𝜅𝜅 𝑝𝑝 − 𝑝𝑝

 Equation 12 

 

Relationship between the CMF and the OR 

Considering all the above relationships, and under the assumption that the HSM definition of 
CMF is correct, Theorem 3.1 shown next encapsulates the relationship between the frequency-
based CMF and the OR obtained from the analysis of a retrospective sample. 

Theorem 3.1. The Relationship between the CMF and the OR, Given a Retrospective Sampling 
Scheme 
For a given retrospective analysis with sampling rate 𝜅𝜅 that empirically estimates ORC=1, the 
relationship of this OR estimate and the true CMF is independent of the sampling scheme and 
governed by Equation 13: 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑂𝑂𝑅𝑅𝐶𝐶=1 ∙
1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 ∙ 𝑂𝑂𝑅𝑅𝐶𝐶=1
 Equation 13 

where, 

OddsC=0  = The unconditional odds of a crash when the treatment is absent. 

ORC=1 = The odds ratio for a crash when the condition is present, with 
respect to the condition not present. 

Other variables as previously defined. 
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Proof of Theorem 3.1 
Substituting Equation 10 in Equation 6: 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑝𝑝𝐶𝐶=1
𝑝𝑝𝐶𝐶=0

=

𝜅𝜅 ∙ 𝑝𝑝𝐶𝐶=1∗

1 + 𝜅𝜅 ∙ 𝑝𝑝𝐶𝐶=1∗ − 𝑝𝑝𝐶𝐶=1∗

𝜅𝜅 ∙ 𝑝𝑝𝐶𝐶=0∗

1 + 𝜅𝜅 ∙ 𝑝𝑝𝐶𝐶=0∗ − 𝑝𝑝𝐶𝐶=0∗

 

After changing the representation of 𝑝𝑝𝐶𝐶=1∗  and 𝑝𝑝𝐶𝐶=0∗  in terms of odds, a complicated expression 
emerges: 

𝐶𝐶𝐶𝐶𝐶𝐶 =

𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1∗

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1∗

1 + 𝜅𝜅 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1∗

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1∗ − 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1∗

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1∗

𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗

1 + 𝜅𝜅 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗ − 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗

 

After simplifying, one arrives at the following form: 

𝐶𝐶𝐶𝐶𝐶𝐶 =

𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1∗

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1∗

𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗

∙
1 + 𝜅𝜅 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗ − 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗

1 + 𝜅𝜅 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1∗

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1∗ − 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1∗

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1∗

 

After the following substitution 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1∗ = 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗ ∙ 𝑂𝑂𝑅𝑅𝐶𝐶=1 one arrives at the following 
expression after further simplification: 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑂𝑂𝑅𝑅𝐶𝐶=1  ∙
[1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗ + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗ ∙ (𝜅𝜅 − 1)]

[1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗ ∙ 𝑂𝑂𝑅𝑅𝐶𝐶=1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗ ∙ 𝑂𝑂𝑅𝑅𝐶𝐶=1 ∙ (𝜅𝜅 − 1)] 

Additional simplification yields the following expression: 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑂𝑂𝑅𝑅𝐶𝐶=1  ∙
1 + 𝜅𝜅 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗

1 + 𝑂𝑂𝑅𝑅𝐶𝐶=1 ∙ 𝜅𝜅 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗  Equation 14 

 

Equation 14 includes the retrospective base odds and the sampling rate 𝜅𝜅 and thus is 
dependent of the sampling scheme. Nonetheless, this equation may be useful when estimating 
the CMF from a retrospective analysis and the sampling rate is known. Although 𝜅𝜅 and 
𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗  are both dependent of the characteristics of the sampling scheme, they are related 
and inversely proportional. Examining Equation 12, it is evident that as 𝜅𝜅 → 0, 𝑝𝑝∗ =
𝑃𝑃(𝑁𝑁 > 0|𝑍𝑍 = 1) → 1 and so 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗ → ∞. 
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Starting from Equation 11, one can establish at this point the relationship between 𝜅𝜅 and 
𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0∗  conditional to each level of the indicator variable C. Because the sampling is carried 
independently of the variable C, the relation in Equation 11 remains unchanged when 
expressed conditional to either of the levels of the variable C (by the definition of statistical 
independence). Therefore, the two following expressions (Equation 15 and Equation 16) are 
true for sampling strictly based on the response variable. When re-expressing Equation 11 in 
terms of odds at C=0: 

𝜅𝜅 =

𝑃𝑃(𝑁𝑁 = 0|𝑍𝑍 = 1)
𝑃𝑃(𝑁𝑁 > 0|𝑍𝑍 = 1)

𝑃𝑃(𝑁𝑁 = 0)
𝑃𝑃(𝑁𝑁 > 0)

=

1
𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0,   𝑍𝑍=1

1
𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0

 

𝜅𝜅 =
𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0

𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0,   𝑍𝑍=1
 Equation 15 

 

As indicated above, Equation 11 can also be written conditional to C=1 and will remain 
unchanged due to independence of the sampling from variable C: 

𝜅𝜅 =
𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1

𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=1,   𝑍𝑍=1
 Equation 16 

 

After replacing Equation 15 and Equation 16 in Equation 14: 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑂𝑂𝑅𝑅𝑇𝑇=1 ∙
1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0

𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0,𝑍𝑍=1
∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0,𝑍𝑍=1

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0
𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0,𝑍𝑍=1

∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0,𝑍𝑍=1 ∙ 𝑂𝑂𝑅𝑅𝑇𝑇=1
 

One arrives to Equation 17, which is the same as in Equation 13 (what was being proven): 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑂𝑂𝑅𝑅𝐶𝐶=1 ∙
1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 ∙ 𝑂𝑂𝑅𝑅𝐶𝐶=1
 Equation 17 

 

The relationship in Theorem 3.1 (i.e., Equation 13 or Equation 17) establishes that the odds at 
the population base condition, the OR, and the frequency-based CMF are related independently 
of the sampling scheme. Furthermore, as 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 → 0 , 𝑂𝑂𝑅𝑅𝐶𝐶=1 → 𝐶𝐶𝐶𝐶𝐶𝐶 in Equation 17, which 
is the long time assumption in the transportation community about the OR and CMF 
equivalence.  

Bias and Other Limitations of the OR when Estimating a Frequency-Based CMF 

Beginning from Equation 17, the OR can be expressed as a function of the CMF and the base 
odds as shown in Equation 18: 



 

22 
 

𝑂𝑂𝑅𝑅𝐶𝐶=1 =
𝐶𝐶𝐶𝐶𝐶𝐶

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 − 𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0
 Equation 18 

 

It is evident that if CMF>1, OR is also larger than 1, because in that case the denominator is 
smaller than 1: 

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 − 𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 < 1 

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 < 1 + 𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 

𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 < 𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 

𝐶𝐶𝐶𝐶𝐶𝐶 > 1 

By similar reasoning, one can demonstrate that if CMF<1, then also OR<1. However, two 
corollaries result from Equation 18: 

• If the CMF is larger than one, the OR is biased to the right (i.e., larger than the CMF). 
• The OR is biased to the left for CMFs smaller than one. 

The magnitude of the bias is directly proportional to the size of the base odds in the analysis. 
These two corollaries are demonstrated next. 

Starting from the assumption that 𝑂𝑂𝑅𝑅𝐶𝐶=1 > 1, one can begin from the following assumption 
about the relative values of OR and CMF: 

𝑂𝑂𝑅𝑅𝐶𝐶=1
?
>𝐶𝐶𝐶𝐶𝐶𝐶 

 

𝐶𝐶𝐶𝐶𝐶𝐶
1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 − 𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0

?
>𝐶𝐶𝐶𝐶𝐶𝐶 

 

1
1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 − 𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0

?
>1 

 

1 ?
>1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 − 𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 

𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 + 1 ?
>1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 

𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 ?
> 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 
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𝐶𝐶𝐶𝐶𝐶𝐶 ?
> 1 

which is true since the original premise was that 𝑂𝑂𝑅𝑅𝐶𝐶=1 > 1. Therefore, the OR is always larger 
than the CMF when CMF>1. By similar reasoning, if CMF<1, then the OR is always smaller than 
the CMF. 

Figure 4 shows a plot of the relationship in Equation 18 for CMF<1.0. For this example, the 
value of CMF was fixed at 0.9. The resulting concave curve was as expected. 

 

Figure 4. OR vs. Base Odds for CMF= 0.9. 
 

As anticipated, the left bias of the OR increases (underestimating the CMF more severely) as 
the base odds increases. Similarly, Figure 5 shows the case of CMF>1 where the trend is that 
the OR degenerates into a convex line with increasing base odds. 

An additional implication of Equation 18 is that it establishes a clear limitation of the OR to 
estimating the CMF as events become more and more common. Since the denominator in 
Equation 18 must be positive to have a physical interpretation, researchers can impose the 
following constraint: 

1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 − 𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 > 0 

After rearranging the inequality, one arrives at Equation 19: 

𝐶𝐶𝐶𝐶𝐶𝐶 <
1

𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0
+ 1 

 
Equation 19 
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Figure 5. OR vs. Base Odds for CMF= 1.1. 
 

Equation 19 establishes that the CMF is bound to be smaller than a positive, monotonically 
decaying function of the base odds. Table 3 shows the maximum estimable CMF for multiple 
values of base odds. 

Table 3. Maximum Estimable CMF, Given Base Odds. 
Odds (Crash |C=0) P(crash | C=0) Maximum Estimable CMF 

0.05 0.05 21.00 
0.1 0.09 11.00 

0.25 0.20 5.00 
0.5 0.33 3.00 
1 0.50 2.00 
2 0.67 1.50 
4 0.80 1.25 
8 0.89 1.13 

16 0.94 1.06 
 

Although Equation 19 imposes a potential limitation, such limitation could be circumvented by 
changing the base level for the analysis. In other words, if one intends to estimate a CMF larger 
than the limiting value per Equation 19, the analysis can be carried defining the base condition 
as the base (C=0), in which case the analysis would estimate CMF-1 without trouble. 
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Estimating the Standard Error of a CMF Derived from a PBA 

This section derives the SE for a CMF estimated from Theorem 3.1 (Equation 13). The right-
hand side of that equation has two estimates that are to be derived from a logistic regression 
analysis. Therefore, the SE estimate of interest is the SE of a function of random variables. For 
ease of calculation, it is convenient to break down Equation 13 in two subfunctions. Let the 
subfunctions A and B be defined as follows: 

𝐴𝐴 = 𝑂𝑂𝑅𝑅𝐶𝐶=1 + 𝑂𝑂𝑅𝑅𝐶𝐶=1 ∙ 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 

𝐵𝐵 = 1 + 𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0 ∙ 𝑂𝑂𝑅𝑅𝐶𝐶=1 

Therefore, from multivariate calculus one can write: 

∆𝐶𝐶𝐶𝐶𝐶𝐶 = ∆𝐴𝐴
1
𝐵𝐵
− ∆𝐵𝐵

𝐴𝐴
𝐵𝐵2

 

Let 𝛽𝛽0 and 𝛽𝛽𝑐𝑐=1 be the logistic regression estimates for the base odds and the OR, respectively, 
then: 

∆𝐴𝐴 = ∆𝛽𝛽𝑐𝑐=1 ∗ exp𝛽𝛽𝑐𝑐=1 + ∆(𝛽𝛽𝑐𝑐=1 + 𝛽𝛽0) ∗ exp(𝛽𝛽𝑐𝑐=1 + 𝛽𝛽0) 

∆𝐵𝐵 = ∆(𝛽𝛽𝑐𝑐=1 + 𝛽𝛽0) ∗ exp(𝛽𝛽𝑐𝑐=1 + 𝛽𝛽0) 

 

The expression ∆𝛽𝛽𝑐𝑐=1 is obtained directly from the information matrix of the logistic model fit 
and the estimate of ∆(𝛽𝛽𝑐𝑐=1 + 𝛽𝛽0) can be obtained from the simple operation: 

 

𝑆𝑆𝐸𝐸(𝛽𝛽𝑐𝑐=1 + 𝛽𝛽0) = �𝑆𝑆𝐸𝐸(𝛽𝛽0)2 + 𝑆𝑆𝐸𝐸(𝛽𝛽𝑐𝑐=1)2 + 2 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶(𝛽𝛽𝑐𝑐=1 + 𝛽𝛽0) 

After the appropriate substitutions, one arrives to the expression in Equation 20 for the CMF 
SE: 

𝑆𝑆𝐸𝐸[𝐶𝐶𝐶𝐶𝐶𝐶]

= �
exp𝛽𝛽𝑐𝑐=1 �𝑆𝑆𝐸𝐸[𝛽𝛽𝑐𝑐=1] + exp(𝛽𝛽0) ∙ �𝑆𝑆𝐸𝐸(𝛽𝛽0)2 + 𝑆𝑆𝐸𝐸(𝛽𝛽𝑐𝑐=1)2 + 2 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶(𝛽𝛽𝑐𝑐=1 + 𝛽𝛽0)�

1 + exp(𝛽𝛽𝑐𝑐=1 + 𝛽𝛽0) �

− �
(exp(2𝛽𝛽𝑐𝑐=1 + 𝛽𝛽0) + exp(2𝛽𝛽𝑐𝑐=1 + 2𝛽𝛽0)).�𝑆𝑆𝐸𝐸(𝛽𝛽0)2 + 𝑆𝑆𝐸𝐸(𝛽𝛽𝑐𝑐=1)2 + 2 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶(𝛽𝛽𝑐𝑐=1 + 𝛽𝛽0)

(1 + exp(𝛽𝛽𝑐𝑐=1 + 𝛽𝛽0))2 � 

 

Equation 20 

 

Estimating the Standard Error of a CMF Derived from a PBA 

In the case of additional covariates, the meaning of the base odds becomes unclear (as it is 
conditional to the base level of the additional covariates) and was explored in the next chapter. 
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In terms of SEs for those cases, researchers estimated 𝑆𝑆𝐸𝐸[𝑂𝑂𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶=0] as SEs for functions of 
random variables themselves, similar to the derivations in the last section.  

Chapter Summary 

This chapter explored the relationship between the CMF and the OR from a theoretical 
standpoint. No distributional assumptions were made to keep the results of the exploration as 
general as possible. The important implications of this analytical evaluation are listed as 
follows: 

• There is an upper bound of the estimable CMF via PBA. Such upper bound decreases as 
the base odds increase toward infinity. 

• For CMFs larger than one, the OR is always larger than the CMF, which implies a right 
bias. Such right bias is a function of the base odds. As the base odds increase toward 
infinity, so does the OR. 

• Conversely, for CMFs smaller than one, the OR is always smaller than the CMF, which 
implies a left bias. Such left bias is again a function of the base odds. As the base odds 
increase toward infinity, the OR converges toward zero. 

• Despite the found biases of the OR with respect to the CMF, the OR converges toward 
the CMF as the base odds decrease toward zero. 
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CHAPTER 4. ANALYSIS 

This chapter summarizes a battery of tests performed on synthetic data on the comparative 
performance of CMF estimation via FBA and PBA. Researchers performed calculations of 
estimates and their precision using the appropriate expressions derived in the prior chapter. 

Synthetic Data Set Development 

Researchers wrote computer code to implement the statistical specification of the two-way-
two-lane undivided rural-highway crash prediction model as defined in the HSM. The intent to 
implement this code was to simulate the crash generation process that model describes, so that 
each simulation yielded the number of crashes per year for a set of conditions fixed 
experimentally. The code requires specifying influential roadway characteristics in a synthetic 
location that it then passes on to the crash generation process, which returns a random 
realization of the number of crashes in a year—a positive random value between zero and 
infinity— that follows the probability distribution established by the HSM two-way, two-lane 
highway in the HSM. 

The computer code described above allowed researchers to generate multiple synthetic (but 
realistic) data sets to explore the performance of CMF estimation under various scenarios. The 
size of the data set to be generated, for example, was an input variable that researchers 
controlled to observe the varying performance of PBAs at different sample sizes. 

In addition to AADT and a set of fixed standard geometric design features (i.e., 12 ft lanes, 6 ft 
paved shoulders, and 0.5 miles of length), each synthetic data set included a subset (about 
30 percent of sites) with a simulated safety intervention, whose CMF was also controlled by 
researchers. This way, researchers could observe the performance of the analyses for different 
values of CMFs. 

Matching Sampling Scheme 

As demonstrated in Chapter 3, the bias of the OR in estimating a CMF depends on how rare the 
events under study are. For all practical purposes, the OR and the CMF are equivalent for the 
rarest events, and they tend to diverge as the events become more and more common. In turn, 
the rarity of crashes is in direct inverse relation to the amount of exposure in the crash-
generating process. In most studies, it is practical to include locations with a range of AADTs, 
which quantify exposure to traffic. To represent this feature from real studies, researchers 
generated synthetic data sets that included a range of AADT values, so the data sets included a 
mix of crash propensities that varied with AADT. This feature, although made for a more 
realistic set of scenarios, required some way to account for crash risk varying systematically 
across the range of AADT. Typically, one includes a feasible functional form of the variable of 
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interest among the regressors as a covariate of the variable of interest in regression analyses. 
The inclusion of additional variables, in turn, is deemed to affect the intercept term 
significantly, as this term is adjusted to the mean reference level of all regressors. Since the 
intercept term captures the base odds, it is unclear what the implications are when shifting 
such term as a function of model adjustments due to other variables. Researchers included 
various alternative adjustment to obtain base odds while accounting for this issue where 
appropriate. 

To explore performance across various such base odds adjustments, researchers constructed a 
matched retrospective sample from each synthetic data set, such that the range of AADTs of 
the rarest instance in the data set (either sites with crashes or sites without crashes) was 
matched according to the sampling rate k. Researchers then explored the performance of 
various PBAs including a range of complexity dealing with the base odds issue. The next section 
briefly describes the adjustments proposed and tested in this research. 

Proposed Adjustments for Base Odds 

As mentioned earlier, some decisions should be made about the base odds because of the 
presence of other variables influential to safety in the analysis. Particularly, crash risk is well 
known to increase with increasing AADT, so AADT is an important confounder to be considered. 
How this variable it is treated in the model should cause a significant impact on the estimated 
base odds as discussed before. The following are the cases that were considered in this 
evaluation: 

Case 1. Base Odds and OR are the only estimands in the PBA, no adjustment to the 
sample base odds. This is the simplest case and it relies in the matching of the data set 
to control implicitly for the confoundedness between the OR and the AADT. Because the 
AADT range and site distribution is exactly the same between the cases and the 
controls, the estimate of the OR should be orthogonal between the two subsets, and 
thus good estimators of the true OR and PBA CMF should be possible to construct. The 
estimator for the PBA CMF is constructed using Equation 13 with an assumption that the 
odds from the PBA are an acceptable estimate of the population odds. The PBA CMF 
from this case is anticipated to show bias as the sampling rate deviates from 1.0. 

Case 2. Base Odds and OR are the only estimands in the PBA and sample base odds are 
adjusted toward population base odds. In this case, the analysis is the same as for case 
1, but an adjustment of the sample base odds is performed via the property shown in 
Equation 14. 

Case 3. Base Odds and OR are the only estimands, the analysis is adjusted for AADT as 
an offset, and no adjustment is done to the sample base odds. The only difference 
between this case and Case 1 is the inclusion of the natural logarithm of the AADT as an 
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offset to the PBA. The estimation of the CMF is carried on under the same assumption 
for the base odds in case 1 and should suffer of the same issues. 

Case 4. Base Odds and OR are the only estimands, the analysis is adjusted for AADT as 
an offset, and sample base odds are adjusted toward population base odds. Similar to 
Case 2, only adjusting the sample base odds to reflect the population base odds from 
the sampling scheme and the data at hand. 

Case 5. Base Odds and OR are estimated alongside with an AADT trend, and no 
adjustment is done to the sample base odds. This case and Case 3 both account for 
AADT, but with the difference that the magnitude of that relationship is added among 
the regression coefficients. However, the estimation of the CMF is carried under the 
same assumption for the base odds in Case 1 and Case 3. 

Case 6. Base Odds and OR are estimated alongside with an AADT trend, and an 
adjustment is done to the sample base odds toward the population base odds. This 
case is the same as Case 5 except that an adjustment toward the population based odds 
is done by a weighted combination of the sample base odds estimate and the median 
AADT value in the sample. The weights are chosen such that the mean-value adjustment 
equals the sample-based estimate of the population base odds (estimation done via 
Equation 14). Although this procedure is rather complex, it is expected to yield a realistic 
SE for the adjusted CMF estimate because such SE incorporates the covariances 
between the OR, the sample base odds, and the AADT coefficient estimates. 

Case 7. Base Odds and OR are estimated alongside with an AADT trend, the sample 
base odds adjusted toward the population base odds with assumption of 
independence. This case is very similar to Case 6 but with the adjustment toward the 
population base odds made through a marginal estimate rather than through a linear 
combination of the intercept and AADT coefficient estimates.  

Case 8. Comparable Prospective Sample. This case consisted of a prospective analysis 
over an independent prospective sample of the same size of the other seven cases for 
comparison. 

Given the definition of the eight cases, there are three models fitted to produce the cases, so 
the OR is the same for the pair Case 1 and Case 2; the pair Case 3 and Case 4 also share the 
same OR, as does the trio Case 5, Case 6, and Case 7. Researchers coded the three models as a 
categorical variable and an indicator variable for the population adjustment of the base odds. 
The next section describes the design of the experiment to test the performance of these 
outlined cases. 
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Experiment Design 

In order to test the performance of the various cases, researchers considered six potentially 
important factors for the evaluations: 

• Rareness of crashes. Three levels were chosen for this factor: 
o Rare events, average annual crash expectation per sample fixed at 0.05. 
o Typical events, average crash expectation per sample fixed at 3. 
o Common events, average crash expectation per sample fixed at 20. 

• Randomness of crashes. Three levels were chosen for this factor: 
o Widely dispersed events, population inverse dispersion parameter Theta (of an 

NB distribution) in the population fixed at 2. 
o Common dispersion events, population dispersion parameter in the population 

fixed at 10. 
o Poisson-like events, population dispersion parameter in the population fixed at 

100. 
• Size of the CMF. Three levels were chosen for this factor: 

o Small, the population CMF was fixed at 0.25. 
o Middle, the population CMF was fixed at 0.75. 
o Large, the population CMF was fixed at 1.5. 

• Sampling rate. Three levels tested here: 
o Heavy on controls, k=5. 
o Balanced, k=2. 
o Heavy on cases, k=0.2. 

• Sample size. Three levels: 
o Small, number n=200 approximately. 
o Medium, n= 800 approximately. 
o Large, n=2500 approximately. 

• Weighted regression. Two levels: 
o Weighted proportionally to the number of crashes. 
o No weights. 

There are 35×2= 486 combinations of these factors. Since there were two estimates per each of 
the eight cases described in the prior section—except for case 8, with only one estimate for the 
PBA CMF—researchers anticipated running a total of 7,290 estimates for analysis. However, the 
number of estimates was reduced because the sampling procedures were not always feasible 
due to issues that emerged from randomness in the synthetic data. For example, in some 
instances a small sample size, high rareness of crashes, and high randomness of crashes 
resulted in synthetic data sets that would not have enough control or treatment sites to satisfy 
the required sampling rate. This was particularly likely for the smallest and largest sampling rate 
values. In an effort to curb this issue, researchers first tried inverting the sampling rate in the 
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problematic cases (because the issue was essentially over-representing the rarer of the two 
types of sites). Researchers did not generate a synthetic data set in the cases that such 
inversion would still not yield a data set for analysis. 

Due to the above issues, a total of 6,225 estimates were obtained from a total of 415 
statistically independent runs (as opposed to the originally anticipated 486 runs). 

Measures of Effectiveness 

Researchers defined two measures of effectiveness to compare the relative performance of the 
seven retrospective cases and their performance relative to the prospective analysis defined for 
that purpose (i.e., Case 8). The following a brief description of the two measures of 
effectiveness for the analysis: 

• Probability of capturing the parameter. This is a binary variable that takes the value of 1 
if a 95 percent confidence interval (CI) around the estimate contains the CMF of 
interest, zero otherwise. 

• SE Inflation with respect to Case 8. This is the ratio of the SE of each estimate to the SE 
of the independent FBA on a prospective synthetic data set of comparable size. 

Results 

After generating the 6,225 estimates as described in the prior section, researchers proceeded 
to an examination of the trends. Such exploratory analysis is shown in the next subsection. 

Exploratory Analysis 
To provide a sense of the results obtained from each run, Table 4 shows a sample result for a 
run where the set of 15 estimates resulted from one synthetic data sets obtained from a fixed 
set of factors per the table header. 

From this table, only estimates from cases 1 through 4 are successful in capturing the true 
parameter (i.e., CMF=0.25) when constructing 95 percent CIs for the OR. Interestingly, the cases 
where the OR fails to capture the parameter are those that included the additional AADT 
regression estimate. In contrast, the true parameter is captured in all seven cases where the 
CMF is estimated from the combination of the OR and the base odds. However, the drawback 
to that success is that the SEs of the estimate tend to be larger for the PBA CMF estimates, in 
some cases three to four times as large as their OR counterparts. 
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Table 4. Sample Set of Runs for p=0.47, Dispersion=0.2, CMF=0.25, k=2, n=796, and No Weights. 
Case OR OR.SE CMF_PBA CMF_PBA.SE 
C1 0.1925 0.0447 0.2856 0.0607 
C2 0.1925 0.0447 0.4331 0.1304 
C3 0.1925 0.0447 0.2856 0.0607 
C4 0.1925 0.0447 0.4331 0.1304 
C5 0.1567 0.0377 0.1905 0.0490 
C6 0.1567 0.0377 0.3733 0.1155 
C7 0.1567 0.0377 0.3146 0.0728 
C8* 0.1868 0.0317 NA NA 

Note: 
* The single estimate obtained from C8 is a CMF Estimator derived from frequency-based analysis 
(CMF_FBA) from an independent synthetic data set of the same sample size obtained prospectively 
from the same population of sites. 
CMF_PBA = CMF Estimator derived from probability based-analysis 

 

Before analyzing the data, researchers prepared an exploratory analysis consisting mostly of a 
set of plots for the relationships and trends emerging between the variables of interest. The 
next section describes the exploratory analysis. 

Bias of the OR by True CMF Estimand Value 

As discussed in the previous chapter, bias in the OR estimator is expected that depends on the 
true CMF estimand and the base odds in the population under study. Researchers prepared 
some graphic assessment of this bias and the performance of the CMF_PBA estimator in 
correcting for this bias. As a comparison, these plots include the CMF_FBA estimator that 
should not be biased due to these issues. 

The next figures show the performance of the pair of retrospective estimators (OR and 
CMF_PBA) produced from some of the cases as defined in the prior chapter. The bias for the 
CMF_FBA is shown in each case for comparison.  
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Figure 6. Bias of Estimators from Case 5 by Value of Sampling Rate K, for True CMF=0.25. 
 

Figure 6 shows the bias of the three estimators for Case 5 for samples with at least 200 sites, 
for the true CMF estimand of 0.25. First, the bias for the CMF_FBA is very small and slightly 
negative. Second, the bias of the OR remains negative (i.e., underestimation), as expected. 
Finally, the sampling parameter has a significant impact on the bias of the CMF_PBA. This was 
expected for all the cases that did not have an adjustment toward the population (Cases 1, 2, 
and 5). Researchers confirmed that the plots for those cases look almost identical to Figure 6. 
The bias is not an issue for larger K values, but it exacerbates for smaller k values (i.e., for 
samples comprising mostly of cases and only few controls in comparison). As said, this was 
expected because the sample base odds tend away from the population base odds and toward 
infinity as the k rate decreases.  

Researchers confirmed that the biases tend to zero for both retrospective estimators as the 
true CMF increases, as shown in Figure 7 and Figure 8. 
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Figure 7. Bias of Estimators from Case 5 by Value of Sampling Rate K, for True CMF=0.75. 
 

 

Figure 8. Bias of Estimators from Case 5 by Value of Sampling Rate K, for True CMF=1.5. 
 

Expectedly, the performance of the CMF_PBA is significantly better for the cases where an 
adjustment of the base odds was done toward the population (Cases 2, 4, 6, and 7), since this 
correction should have curbed the distortion incorporated by the unbalanced sampling. The 
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typical performance of the four cases with correction toward the population base odds can be 
seen in Figure 9. This figure represents the bias for Case 6 estimators when the true CMF is 
fixed at 0.25. Generally, the improvement in performance was most notable for Cases 6 and 7. 

 

 

Figure 9. Bias of Estimators from Case 6 by Value of Sampling Rate K, for True CMF=0.25. 
 

The OR estimate is consistently negatively biased, and the CMF_FBA estimator tends to be 
slightly negatively biased. Interestingly, the bias of the CMF_PBA estimator is on par with the 
CMF_FBA estimator for the two values of k smaller than 1, and it goes toward a moderately 
positive bias for k values larger than one. Also interesting is the transition from slight negative 
bias to slight positive happens approximately at the k value indicated a balanced prospective 
sample (i.e., k=1). 

Although results show that FBA is to be preferred in general, Figure 10 shows that FBA tend to 
be biased when the crash expectation is lower. In those cases, both estimates from PBA offer 
virtually unbiased alternatives when the estimand CMF also has small values. 
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Figure 10. Bias of Estimators from Case 7 by Crash Expectation, for True CMF=0.25. 
 

However, Figure 11 shows that the bias of PBA estimates is expected to go up as the 
expectation of cashes increases and the CMF under estimation is larger than one. CMF_PBA 
should then be the preferred method in that case. 

 

Figure 11. Bias of Estimators from Case 7 by Crash Expectation, for True CMF=1.5. 
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Proximity Rank and Probability of Capturing True CMF Estimand 

Next, researchers looked at marginal comparisons between the three types of estimates 
obtained from each run. Figure 12 shows the rank in closeness of the three types of estimates 
among the results (1 being the closest to the true CMF estimand, 15 being the farthest).  

 

Figure 12. Rank in Proximity to the Parameter for Each Estimate. 
 

This figure shows that the CMF_FBA estimator ranks between first and eighth about 75 percent 
of the time. In contrast, the CMF_PBA and OR tend to rank very similarly to each other, with 
perhaps the CMF_ PBA being slightly better, as it tends to rank between fourth and twelfth 
about 50 percent of the time, while ranking between first and fourth about 25 percent of the 
time. This is slightly better than the OR that tends to rank between fifth and twelfth about 
50 percent of the time, while ranking between first and fifth for 25 percent of the time. 

Figure 13 shows that both the OR and CMF_PBA estimators from each case tend to perform 
similarly in terms of proximity to the true parameter. Judging by the median ranks, the 
CMF_PBA from cases C2, C4, C6, and C7 —all cases that do some adjustment toward the 
population from the base odds from the regression model— tend to perform better than their 
paired OR and both the CMF_PBA and OR from the comparable cases that did not adjust the 
base odds toward the population (i.e., Cases 1, 3, and 5). 
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Figure 13. Rank in Proximity to the Parameter by Case and Estimate Type. 
 

Next, researchers calculated a 95 percent CI around each estimate and verified whether the 
true CMF estimand was captured within that CI. Researchers defined an indicator variable as 
one if the true estimand was captured, zero otherwise. The expected value of a variable so 
defined is the probability of capturing the true estimand by the CI. Figure 14 shows the trend 
line for the probability of success by the true CMF estimand value. 

 

Figure 14. Probability of Capturing True CMF by Estimate Type. 
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This figure shows the CMF_PBA performs very comparably to the prospective estimator 
CMF_FBA, and that both outperforming the OR in capturing the true parameter. 

Figure 15 shows that the CMF_FBA does not seem to have issues at any particular value of the 
CMF estimand. In contrast, the two retrospective estimators tend to under-perform at the 
lower true CMF estimand value (though the CMF_PBA clearly outperforms the OR). This figure 
also shows that the expected performance of the CMF_PBA improves as the true CMF estimand 
value increases. 

 

 

Figure 15. Probability of Capturing True CMF by Estimate Type. 
 

Figure 16 shows that the probability of success of the CMF_PBA estimator is consistently higher 
than the OR Estimator’s across all sample sizes in the experiment. 



 

40 
 

 

Figure 16. Probability of Capturing True CMF by Sample Size and Estimate Type (Case 7 Only). 
 

In contrast with Figure 16, Figure 17 shows that the proximity of the CMF_PBA estimate to the 
true parameter is not necessarily higher nor lower than the OR across all sample sizes in the 
experiment. 

 

Figure 17. Proximity Ranks by Sample Size, Given True CMF Is Captured (Case 7 Only). 
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Figure 18 shows how the OR tend to be closer to the true parameter (the true CMF estimand) 
than the CMF_PBA, given that both estimates have captured the true CMF parameter. This 
feature suggests a tradeoff of the CMF_PBA estimator—it is more likely to capture the true 
CMF estimand, but it also tends to be farther away from the actual parameter value. 

 

 

Figure 18. Proximity Rank Given True CMF Was Captured. 
 

Notably, the difference in performance between the OR and CMF_PBA is minimal for the pair of 
estimates from Case 7 in terms of proximity to the true CMF. Furthermore, Figure 19 shows 
that the performance of the CMF_PBA is superior for the three levels of the True CMF in the 
experiment, especially for true CMF = 1.5 (i.e., it had better proximity rankings than the OR on 
its lower tail). 



 

42 
 

 

Figure 19. Proximity to True CMF by Estimate Type, Given that CI Contains True CMF (Case 7 Only). 
 

The next section shows the results of a set of formal statistical analyses on the data from the 
experiment. 

Regression Analysis 
This section summarizes the results from modeling the three measures of effectiveness as 
functions of the experiment design parameters. Researchers considered the features observed 
in the exploratory analyses above to construct appropriate generalized mixed effects models to 
account for the blocking that results from the fact that each simulation run produced 15 
estimates. Researchers performed stepwise model selection based on Akaike information 
criterion and on Deviance Analysis of Variance in cases of convergence issues.  

Probability of Capturing True CMF 

The first statistical analysis modeled the probability of capturing the CMF within a 95 percent CI 
as a function of the experiment parameters. This probability is referred to as the probability of 
success from this point forward. Table 5 shows the success ORs for the experiment parameters 
in the most parsimonious model. 
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Table 5. Analysis Results for the Probability of Capturing the True CMF. 
Parameter OR (95 % CI) 

Significancea Lower Limit Upper Limit 
True CMF Estimand 1.7515 9.9923 ** 
Sampling rate (k) 0.4786 0.8118 *** 
Number of cases 0.9978 1.0000 * 

Parameters that Affected Performance of the OR Estimator 
Base Odds for OR 0.1711 0.6180 *** 
Theta (for OR) 0.9788 0.9994 * 
E(Crashes) (for OR) 0.8294 0.9433 *** 
Population Adjustment (for OR) 0.7587 1.4081  

Comparative Effects on the CMF_PBA Estimator 
Theta (for PBA) 0.9866 1.0076  
E(Crashes) (for PBA) 0.9348 1.0650  
Population Adjustment (for PBA) 0.5350 1.0099   
a Significance Levels are as follows: 
* = Statistically different from 0.0 at the 5.0% significance level. 
** = Statistically different from 0.0 at the 1.0% significance level. 
*** = Statistically different from 0.0 at the 0.1% significance level. 

   

 

The next subsections describe the implications of the results shown in Table 5. 

Experiment Parameters that Affected the Performance of both Estimators Equally 

Table 5 shows that three design parameters had a uniform effect on both the CMF_PBA and the 
OR estimators: 1) the value of the true CMF; 2) the sampling rate k; and 3) the number of cases 
(as opposed to the number of controls). 

The odds of success for both estimates (CMF_PBA and OR) increased by a factor of between 
1.75 and 9.99 for each additional point in the CMF. Alternatively, results indicate that the odds 
of successfully capturing the true CMF increased by a factor of between 1.05 and 1.26 for each 
0.1 increase in the CMF to be estimated. 

The odds of success for both estimates (CMF_PBA and OR) decreased significantly by a factor of 
between 0.479 and 0.812 for each unit increase in the sampling rate k. 

The number of cases (i.e., locations with at least one crash) had a mild effect on the odds of 
success of both estimators. For each additional case in the sample, the odds of success 
decreased by a factor of between 0.998 and 1.000. Alternatively, results indicate that the odds 
of successfully capturing the true CMF decreased by a factor of between 0.799 and 1.000 for 
each additional 100 cases in the sample. 
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Table 5 shows two sets of estimates for the three experimental parameters Theta, crash 
expectation, and the variable indicating an adjustment for the population on the base odds in 
the CMF_PBA estimator. The first set of estimates reflects the impact of these parameters on 
the OR estimator and the second set the corresponding estimates for the CMF_PBA estimator. 
There is no evidence of any effect on the odds of successfully capturing the true CMF (at a 
95 percent confidence level).  

Experiment Parameters that Affected the Performance of the OR Estimator 

The success rate of the OR estimator was found to suffer at three levels in addition to the 
effects found in common for both the OR and CMF_PBA estimators. The second set of effect 
estimates in Table 5 shows two factors that affected the performance of the OR estimator only. 
The estimate for the effect of the population adjustment is also shown, but it is not statistically 
significantly different than 1.0. 

After accounting for all other influential factors, the base odds of success for the OR estimator 
were smaller by a factor of between 0.171 and 0.618 compared to the base odds of the 
CMF_PBA estimator. In other words, the CMF_PBA was found to be between 1.6 to 5.8 times 
more likely to succeed in capturing the true CMF, after discounting the effect of design 
variables. 

The inverse dispersion parameter Theta had a significant effect on the odds of success of the 
OR estimator, in contrast to no discernible effect on the odds of success of the CMF_PBA 
estimator, as described in the next section. For each unit increase in Theta, the odds of success 
for the OR estimator decreased by a factor of between 0.9788 and 0.994. Alternatively, results 
indicate that the odds of successful capture of the true CMF for the OR estimator decreased by 
a factor of between 0.807 and 1.000 for each 10-units increase in the inverse dispersion 
parameter Theta. 

The expectation of crashes also had a significant effect on the odds of success for the OR 
estimator, in contrast to no discernible effect on the odds of success for the CMF_PBA 
estimator (as described in the next section). For each unit increase in crash expectation, the 
odds of success decreased by a factor of between 0.0829 and 0.943 for the OR estimator.  

Experiment Parameters that Affected the Performance of the CMF_PBA Estimator 

Table 5 shows the estimated effects on the CMF_PBA estimator of the two experiment 
parameters found to affect OR performance (Theta and crash expectation) and an estimate for 
the variable indicating if the estimator includes an adjustment toward the population base 
odds. The analysis found no evidence supporting the hypothesis that any of these two 
estimates affected the chances of the CMF_PBA estimator successfully to capture the true CMF 
(at a 95 percent confidence level).  
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Comparative Analysis of Standard Errors of the Estimators 

In this analysis, researchers calculated the ratio between the SEs of all retrospective estimators 
to the SE of the prospective estimator (i.e., Case 8). This ratio is called the SE inflation factor 
(SEIF) from this point forward. The purpose of the analysis is to assess the magnitude of the 
tradeoff of using the CMF_PBA estimator. On the one hand, the prior section demonstrated 
that the CMF_PBA is in general more likely to succeed in capturing the true CMF, as well as 
more robust against the detrimental effects of increasing crash mean and the dispersion 
parameter. 

Researchers fitted a linear mixed-effects multiplicative model to characterize the median SEIF 
as function of the experiment parameters. Table 6 shows the results after a stepwise model 
selection process. This table is divided into two sets of parameters.  

Table 6. Analysis Results for the SEIF on the Retrospective Estimators. 

Parameter Estimate Std. 
Error 

Degr. of 
freedom t value Pr(>|t|) Significancea 

True CMF Estimand 1.13E+00 3.32E-01 4.09E+02 3.38E+00 7.86E-04 *** 

Crash Expectation 4.82E-02 2.17E-02 4.09E+02 2.23E+00 2.64E-02 * 

Sampling rate (k) -1.55E-01 8.93E-02 4.09E+02 -1.73E+00 8.36E-02 # 
Number of Cases in 

Sample 
3.10E-04 1.85E-04 4.09E+02 1.67E+00 9.54E-02 # 

Estimator Magnitude 6.07E-08 1.63E-08 5.48E+03 3.73E+00 1.96E-04 *** 

Estimator SE 1.87E-13 1.21E-14 5.40E+03 1.54E+01 < 2e-16 *** 

Basel Inflation OR SE -4.49E-01 4.28E-01 4.11E+02 -1.05E+00 2.94E-01  

Base Inflation CMF_PBA SE 2.49E+00 6.77E-02 5.39E+03 3.68E+01 < 2e-16 *** 

CMF_PBA from Model 5,6 
and 7 

-8.14E-01 1.04E-01 5.39E+03 -7.87E+00 4.38E-15 *** 

CMF_PBA from Model 1_2 
and Population 

Adjustment 
-1.61E+00 1.03E-01 5.39E+03 -1.55E+01 < 2e-16 *** 

CMF_PBA from Model 3_4 
and Population 

Adjustment 
-1.61E+00 1.03E-01 5.39E+03 -1.55E+01 < 2e-16 *** 

a Significance Levels as follows: 
# = Statistically different from 0.0 at the 10.0% significance level. 
* = Statistically different from 0.0 at the 5.0% significance level. 
** = Statistically different from 0.0 at the 1.0% significance level. 
*** = Statistically different from 0.0 at the 0.1% significance level. 
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The upper half corresponds to the effects of experiment parameters that affected the 
performance of both estimators (OR and CMF_PBA). The lower half corresponds to the 
differentiated effects of some parameters over the OR and CMF_PBA separately. 

Parameters that Affect Both Retrospective Estimators (OR and CMF_PBA) 

Other things equal, Table 6 indicates that higher values of the true CMF under investigation 
resulted in an inflation of 3.08 (3.08=exp(1.13)) on the SEs of both retrospective estimators for 
the prospective estimator from a similar sample size, for each increase of 1 in the estimand 
CMF. Alternatively, it is expected that the SE of a retrospective estimate will increase by a 
factor of 1.76 for each additional 0.5 increase in the magnitude of the true CMF under 
estimation (1.76=exp (1.12*0.5)).  

Increases in the crash expectation were also found to result in inflation of the SEs for both 
retrospective estimators. After controlling for other factors, retrospective SEs were found to 
increase by a factor of 1.05 (1.05=exp (4.82×10-2)) for each one crash increase in the grand 
average of the crash expectation in the sample under study. Results also imply that the median 
SEIF increases by a factor of 1.62 (1.62=exp (10x 4.82×10-2)) for each 10 crashes increase in the 
grand average of crash expectation at the sample of sites under study. 

This analysis did not find significant evidence that the sampling rate and the number of cases in 
the sample affect the inflation of SEs of retrospective estimators (at a 95 percent confidence 
level). However, at a 90 percent confidence level, the evidence is suggestive that decreasing 
sampling rate value and increasing number of cases in the sample could each result in median 
SEIF inflation. 

This analysis found significant evidence that the amount of median SEIF is directly proportional 
to the magnitude of the retrospective estimator and its SE. The rate of increase of these effects 
is very small and of no practical significance to this research.  

Specific Effects on the CMF_PBA Estimator and Relative SEIF between OR and CMF_PBA 

As mentioned earlier, the lower half of Table 6 has estimates that represent variability in SEIF of 
specific retrospective estimators. For easier interpretation, researchers used those parameters 
to construct the ratios and their CIs shown in Table 7. 
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Table 7. Analysis Results for the SEIF on the Retrospective Estimators. 

Median SEIF Ratios Estimate Std. Err. 
95% CI 

Lower Upper 

OR / CMF_FBA 0.638 0.273 0.276 1.476 

CMF_PBA / OR (CMF_PBA from Cases 1 or 2) 2.430 0.219 2.036 2.901 

CMF_PBA / OR (CMF_PBA from Cases 3 or 4) 2.430 0.219 2.036 2.901 

CMF_PBA / OR (CMF_PBA from Cases 5, or 6) 5.359 0.484 4.489 6.397 

CMF_PBA / OR (CMF_PBA from Case 7) 1.763 0.119 1.544 2.014 

 

The first ratio in Table 7 indicates that the median SEIF for the OR estimator is between 0.276 
and 1.476, after accounting for other factors. In other words, there is no evidence that the SE of 
the OR estimator and the prospective estimator (i.e., the CMF FBA) are statistically different, 
after accounting for other factors influential to the SEIF of the retrospective estimators. 

In contrast with the previous finding, the last three ratios in Table 7 show that the SE of the 
CMF_PBA estimator is, in general, wider than the SE of the OR. This finding explains, to a large 
extent, why the CMF_PBA performed significantly better than the OR in capturing the true CMF 
in a 95 percent CI. Larger SEs result in wider CIs and increased robustness against influential 
factors. 

Table 7 indicates that, other things equal, the median SE for the CMF_PBA is between 2.036 
and 2.91 times as wide as the SE for the OR when the CMF_PBA was estimated from cases 1 
through 4, with little to no difference between these cases. 

Finally, Table 7 indicates that the median SE for the CMF_PBA obtained from Case 7 is between 
1.544 and 2.014 times as wide as the SE for the OR. Researchers consider that such range for 
SEIF is an acceptable price to pay for having the odds of capturing the true CMF in a CI 
increased significantly (odds increase by a factor of between 1.5 and 5.8, per Table 5). 

Summary 

This chapter has summarized the analyses performed between the two retrospective 
estimators for a CMF that concern this report. Some important points are summarized next: 

• Researchers coded the crash model for two-way, two-lane model in the HSM to 
generate synthetic samples for analysis. 

• Researchers adopted a matching sampling scheme because of two reasons: 1) the 
inclusion of AADT in the crash simulation process, a variable that significantly affects the 
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number of crashes generated; and 2) AADT is expected to affect the base odds in the 
model significantly, now conditional to AADT and to the OR. A matched sample scheme 
allowed researchers to explore various ways account for the AADT in the estimation of 
the CMF_PBA estimators. 

• Eight cases were proposed to construct the CMF_PBA estimator based on three 
specifications of the logistic model to be fitted on the retrospective samples analyzed. 

• Researchers proposed an experiment design including six multilevel factors with a total 
of 486 potential combinations. Because researchers planned to develop 15 estimates for 
each of those combinations of factors, researchers set an initial target of 7,290 
estimates. 

• After running the simulations, it was not possible to generate synthetic data sets for all 
486 possible combinations of factors. As 71 combinations did not yield synthetic data, 
researchers generated a total of 6,225 estimators for the analysis. 

• Researchers established two criteria for evaluation of the retrospective estimators: 
1) the probability to capture the true CMF estimand; and 2) SEIF with respect to a 
comparable prospective estimator (i.e., CMF_FBA). 

• An exploratory analysis of the retrospective estimates showed that: 

o The prospective estimator CMF_FBA tends to fall closer to the true CMF estimand. 
o The CMF_FBA estimator tends to outperform the OR in capturing the true CMF 

estimand, but the CMF_PBA tends to outperform both the CMF_FBA and the OR. 
o The value from the CMF_PBA estimator tends to be closer than the OR estimator to 

the true CMF estimand for all cases that did an adjustment of the regression base 
odds toward the population base odds when constructing the CMF_PBA. 

o Among all estimates that captured the true CMF estimand in a 95 percent CI, the OR 
tended to be closer to the estimand, except for Case 7, where the CMF_PBA 
outperformed the OR. 

• A formal statistical analysis on the probability of success in capturing the estimand CMF 
yielded the following results: 

o Increasing the estimand CMF, sampling rate, and number of sites-with crashes in the 
sample will result in increased probability of capturing the true CMF estimand for 
both retrospective estimators, ceteris paribus. 

o In general, the probability of success is smaller for the OR compared to either the 
CMF_PBA or the CMF_FBA estimators. The probability of success for the OR 
decreases with increasing dispersion and increasing number of expected crashes. 
The CMF_PBA was robust against these adverse effects of increased dispersion and 
crash expectation. 
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• Researchers performed a formal statistical analysis on the inflation of the SE for the 
retrospective estimators with respect to the SE for the comparable prospective 
estimator. The results indicate that: 

o The SE width increases for both the CMF_PBA and OR when the CMF estimand, 
crash expectation, and the number of sites with crashes in the sample increase. 
Conversely, the SEIF increases and when the sampling rate decreases. 

o The median SE width of the OR is comparable to the CMF_FBA SE. In general, the 
median SE for all CMF_PBA estimators is larger than the median SE for the OR. The 
best performing CMF_PBA was the one obtained from Case 7. All CMF_PBA 
estimates from Cases 1 through 5 performed comparably well but not as well as the 
estimate from Case 7. The worst performing CMF_PBA estimators were those from 
Cases 5 and 6. 
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 

The motivation for this work was to provide guidance to future researchers when estimates of 
safety effects are needed for crash types that are especially scarce. In these cases, traditional 
analysis methods are impractical to implement.  

This project identified and quantified relationships between the OR from PBA and the CMF 
from crash FBA. Researchers developed an analytical framework in which the crash generating 
process gives emergence to the link between the OR and the CMF in that context. 

Researchers proposed a set of adjustments to curb the known bias of OR in estimating the CMF 
from the analytical framework. The set of adjustments were evaluated using synthetic data sets 
that researchers generated for that purpose. 

The following sections summarize the findings, conclusions, and recommendations from this 
work 

On the Bias of the OR and the Correction Offered by the CMF_PBA 

As it was uncovered in the exploratory analysis of the results, the behavior of the OR estimator 
confirmed a systematic bias in estimating the true CMF as researchers exposed in Chapter 3 by 
analytical means (i.e., theorem 3.1 expressed in Equation 13 or Equation 14). Furthermore, the 
analysis of simulated data found severe biases in the CMF_PBA estimator from the cases that 
assumed that the base odds from the sample could be taken to represent the base odds from 
the population (i.e., applying Equation 13 without adjusting the base odds toward the 
population, as required by Equation 14). However, the CMF_PBA was essentially unbiased (or 
exhibited bias comparable to the bench mark CMF_FBA estimator) when the appropriate 
adjustment is performed on the base odds prior to calculations. In Cases 2, and 4, this 
adjustment consisted of multiplying the base odds by the sampling rate, as shown in Equation 
13. Additionally, Equation 14, but researchers considered other ways to perform an equivalent 
adjustment with similar or perhaps slightly better results. In Case 6, the adjustment is a 
weighted linear combination of coefficient estimates weighted toward mean values of the 
exposure variable (AADT) to produce an estimate of the population base odds equivalent to an 
estimate of the population base odds from the marginal distribution of crashes in the sample. 
With similar results, the adjustment in Case 7 was simply the combination of the OR from the 
regression with a population base odds estimate from marginal base odds of the sample and 
the sampling rate, per Equation 14. 

It is recommended that researchers interested in applying PBA consider either of the two 
formulations of theorem 3.1 (Equation 13 or Equation 14) to perform the adjustment to the 
CMF_PBA estimator to correct the known bias of the OR estimator with respect to the true 



 

51 
 

CMF. This adjustment is especially needed when the estimand CMF tend to have smaller values, 
as the OR tends be consistently below the true CMF, which implies that it would offer an over-
optimistic estimate of effectiveness for CMFs smaller than one. 

On the Viability of Estimating CMFs from Retrospective Analyses 

The analyses found that it is generally preferable to perform a prospective analysis to estimate 
the CMF, as this estimate is least biased, it offers a high probability of capturing the true CMF 
estimand and offers relatively narrow CIs. The first two of these advantages are shared with the 
CMF_PBA with population adjustment in most cases, but at the expense of a wider SE (between 
1.54 and 2.01 times as large, per the SEIF analysis). 

Although results indicated that FBA should be preferred in general, this research showed that 
CMF_FBA has a significant bias in cases where the crash expectation is small. PBA estimates 
offer an unbiased alternative to the CMF_FBA across a wide range of crash expectations when 
estimating small CMFs (Figure 10). Researchers recommend the CMF_PBA in those cases. 
However, the analyses found the CMF_FBA would have positive bias when estimating larger 
CMFs when the crash expectations are higher (Figure 11). Fortunately, the bias from the 
CMF_FBA obtained from traditional methods is minimal in those cases, so it should be 
preferred. Regardless, Figure 11 shows that the CMF_PBA tend to correct for the OR bias at 
high crash expectations (yet not completely eliminating the bias). 

On the Performance of CMF_PBA Estimator with Respect to the OR 

In general, the CMF_PBA estimator was found more robust and less biased than the OR in 
terms of higher probability of success in capturing the true CMF parameter in general (because 
of the significantly lower base odds of success for the OR, per Table 5). Additionally, the 
CMF_PBA was not found sensitive to the dispersion and expected value of crashes, both factors 
found to significantly affect the OR probability of success in capturing the true CMF parameter 
(per Table 5). However, researchers found the CMF_PBA to be less biased and robust against 
increasing dispersion and crash expectation, but at the price of a larger SE than the SEs for the 
OR estimators, which implies that it would require larger samples in general (per Table 7). 

Recommendations for Future Researchers 

Among the different CMF_PBA with adjustment toward the population, the CMF_PBA 
estimator in Case 7 was found especially robust and is recommended as the best alternative to 
the CMF_FBA estimator when a prospective sample is not feasible to obtain. The CMF_PBA 
from Case 7 is obtained from a retrospective model (i.e., logistic regression) that includes a 
term for AADT. The PBA estimator is constructed with the OR from the model results and an 
estimate of the population base odds that combines the sampling rate and a marginal estimate 
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of the base odds in the sample. When constructing the SE for this estimator, a critical 
assumption is that the OR and the adjusted base odds are independent, though these two 
quantities are probably correlated (most likely negatively). The reasoning behind the 
assumption is that the estimated SE is wider than the true SE if the correlation is indeed 
negative. 

Future Work 

Researchers recommend future work on the following points: 

• Further refinements and theoretical characterizations for the CMF_PBA estimator and 
simple adjustments to the base odds, similar to the adjustment proposed in Case 7. 

• Develop a software implementation to estimate robust CMF_PBA estimators. 
• Determine the set of conditions (e.g., required sample size, crash expectation, 

dispersion, and true CMF estimand) under which the CMF_PBA should be used over the 
traditional estimation methods. 
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